Physics Assignment Help With Energy in simple harmonic motion
7.1.1 Energy in simple harmonic motion
x0 and the parameters k and m determine the energy of the oscillations. The force F is a conservative force and so is expressed as the rate of change with x of a potential energy function U (x).
with
in our example. The total energy E of the oscillating atom at time t is the sum of potential and kinetic energies. Hence
=
Or, using equation (iii),
=
Since the sum of the squares of the sines and cosines of any angle equation unity.
We see that, as expected, E is constant for fixed m, k, and x0 and during the motion potential and kinetic energy are interchanged continuously, the former being zero when the speed is at its maximum value, and the latter being zero when the speed is zero at the turning points of the oscillation.
Email Based Assignment Help in Energy in simple harmonic motion
We are the leading online Assignment Help provider. Find answers to all of your doubts regarding the Energy in simple harmonic motion. Assignmenthelp.net provide homework, Assignment Help to the school, college or university level students. Our expert online tutors are available to help you in Energy in simple harmonic motion. Our service is focused on: time delivery, superior quality, creativity and originality.
To submit physics Energy in simple harmonic motion assignment click here.
Following are some of the areas in physics Simple Harmonic Motion which we provide help: